Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity.
نویسندگان
چکیده
The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes in the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.
منابع مشابه
Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity.
Bacterial β-glucuronidases expressed by the symbiotic intestinal microbiota appear to play important roles in drug-induced epithelial cell toxicity in the gastrointestinal (GI) tract. For the anticancer drug CPT-11 (irinotecan) and the nonsteroidal anti-inflammatory drug diclofenac, it has been shown that removal of the glucuronide moieties from drug metabolites by bacterial β-glucuronidases in...
متن کاملMolecular Insights into Microbial b-Glucuronidase Inhibition to Abrogate CPT-11 Toxicity
Bacterial b-glucuronidases expressed by the symbiotic intestinal microbiota appear to play important roles in druginduced epithelial cell toxicity in the gastrointestinal (GI) tract. For the anticancer drug CPT-11 (irinotecan) and the nonsteroidal anti-inflammatory drug diclofenac, it has been shown that removal of the glucuronide moieties from drug metabolites by bacterial b-glucuronidases in ...
متن کاملChemical composition and biological activities of essential oil and methanol extract of Scrophularia umbrosa
Background and objectives: Scrophularia umbrosa Dumort is used as a traditional herb in China. In this study, chemical profile, free radical suppression capability, general toxicity and cardiovascular activities of the volatile compounds from S. umbrosa were investigated. Moreover, methanol (MeOH) extract of rhizomes were analyzed to purify and identify the co...
متن کاملMathematical Modeling of Cancer Cells and Chemotherapy Protocol Dealing Optimization Using Fuzzy Differential Equations And Lypunov Stability Criterion
Mathematical models can simulate the growth and proliferation of cells in the interaction with healthy cells, the immune system and measure the toxicity of drug and its effects on healthy tissue pay. One of the main goals of modeling the structure and growth of cancer cells is to find a control model suitable for administration among patients. In this study, a new mathematical model is designed...
متن کاملAn Atlas of β-Glucuronidases in the Human Intestinal Microbiome.
Microbiome-encoded β-glucuronidase (GUS) enzymes play important roles in human health by metabolizing drugs in the gastrointestinal (GI) tract. The numbers, types, and diversity of these proteins in the human GI microbiome, however, remain undefined. We present an atlas of GUS enzymes comprehensive for the Human Microbiome Project GI database. We identify 3,013 total and 279 unique microbiome-e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry & biology
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2015